ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modremain GIF version

Theorem modremain 11553
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
modremain ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑁   𝑧,𝑅

Proof of Theorem modremain
StepHypRef Expression
1 eqcom 2119 . 2 ((𝑁 mod 𝐷) = 𝑅𝑅 = (𝑁 mod 𝐷))
2 divalgmodcl 11552 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
323adant3r 1198 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
4 ibar 299 . . . . 5 (𝑅 < 𝐷 → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
54adantl 275 . . . 4 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
653ad2ant3 989 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
7 nnz 9041 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
873ad2ant2 988 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝐷 ∈ ℤ)
9 simp1 966 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℤ)
10 nn0z 9042 . . . . . . . 8 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
1110adantr 274 . . . . . . 7 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℤ)
12113ad2ant3 989 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℤ)
139, 12zsubcld 9146 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑁𝑅) ∈ ℤ)
14 divides 11422 . . . . 5 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
158, 13, 14syl2anc 408 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
16 eqcom 2119 . . . . . 6 ((𝑧 · 𝐷) = (𝑁𝑅) ↔ (𝑁𝑅) = (𝑧 · 𝐷))
17 zcn 9027 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
18173ad2ant1 987 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℂ)
1918adantr 274 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ)
20 nn0cn 8955 . . . . . . . . . 10 (𝑅 ∈ ℕ0𝑅 ∈ ℂ)
2120adantr 274 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℂ)
22213ad2ant3 989 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℂ)
2322adantr 274 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ)
24 simpr 109 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
258adantr 274 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ)
2624, 25zmulcld 9147 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ)
2726zcnd 9142 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ)
2819, 23, 27subadd2d 8060 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
2916, 28syl5bb 191 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3029rexbidva 2411 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3115, 30bitrd 187 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
323, 6, 313bitr2d 215 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
331, 32syl5bb 191 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 947   = wceq 1316  wcel 1465  wrex 2394   class class class wbr 3899  (class class class)co 5742  cc 7586   + caddc 7591   · cmul 7593   < clt 7768  cmin 7901  cn 8688  0cn0 8945  cz 9022   mod cmo 10063  cdvds 11420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fl 10011  df-mod 10064  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-dvds 11421
This theorem is referenced by:  bezoutlemnewy  11611  bezoutlemstep  11612
  Copyright terms: Public domain W3C validator