ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim GIF version

Theorem moim 2006
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))

Proof of Theorem moim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1475 . . 3 𝑥𝑥(𝜑𝜓)
2 ax-4 1441 . . . . . 6 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
3 spsbim 1765 . . . . . 6 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
42, 3anim12d 328 . . . . 5 (∀𝑥(𝜑𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓)))
54imim1d 74 . . . 4 (∀𝑥(𝜑𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
65alimdv 1801 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
71, 6alimd 1455 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 ax-17 1460 . . 3 (𝜓 → ∀𝑦𝜓)
98mo3h 1995 . 2 (∃*𝑥𝜓 ↔ ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))
10 ax-17 1460 . . 3 (𝜑 → ∀𝑦𝜑)
1110mo3h 1995 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
127, 9, 113imtr4g 203 1 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1283  [wsb 1686  ∃*wmo 1943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946
This theorem is referenced by:  moimi  2007  euimmo  2009  moexexdc  2026  euexex  2027  rmoim  2792  rmoimi2  2794  disjss1  3780  reusv1  4216  funmo  4947
  Copyright terms: Public domain W3C validator