Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 GIF version

Theorem monoord2 9400
 Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord2.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord2.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2.2 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
32renegcld 7450 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -(𝐹𝑘) ∈ ℝ)
4 eqid 2056 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))
53, 4fmptd 5350 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)):(𝑀...𝑁)⟶ℝ)
65ffvelrnda 5330 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ∈ ℝ)
7 monoord2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
87ralrimiva 2409 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9 oveq1 5547 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
109fveq2d 5210 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
11 fveq2 5206 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1210, 11breq12d 3805 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1312cbvralv 2550 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
148, 13sylib 131 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1514r19.21bi 2424 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
16 fzp1elp1 9039 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1716adantl 266 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
18 eluzelz 8578 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
191, 18syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
2019zcnd 8420 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
21 ax-1cn 7035 . . . . . . . . . . . 12 1 ∈ ℂ
22 npcan 7283 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2320, 21, 22sylancl 398 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2423oveq2d 5556 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2524adantr 265 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2617, 25eleqtrd 2132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
272ralrimiva 2409 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
2827adantr 265 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
29 fveq2 5206 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
3029eleq1d 2122 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
3130rspcv 2669 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ))
3226, 28, 31sylc 60 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
33 fzssp1 9032 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3433, 24syl5sseq 3021 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3534sselda 2973 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
3611eleq1d 2122 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
3736rspcv 2669 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑛) ∈ ℝ))
3835, 28, 37sylc 60 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ)
3932, 38lenegd 7589 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1))))
4015, 39mpbid 139 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1)))
4138renegcld 7450 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ∈ ℝ)
4211negeqd 7269 . . . . . . 7 (𝑘 = 𝑛 → -(𝐹𝑘) = -(𝐹𝑛))
4342, 4fvmptg 5276 . . . . . 6 ((𝑛 ∈ (𝑀...𝑁) ∧ -(𝐹𝑛) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4435, 41, 43syl2anc 397 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4532renegcld 7450 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘(𝑛 + 1)) ∈ ℝ)
4629negeqd 7269 . . . . . . 7 (𝑘 = (𝑛 + 1) → -(𝐹𝑘) = -(𝐹‘(𝑛 + 1)))
4746, 4fvmptg 5276 . . . . . 6 (((𝑛 + 1) ∈ (𝑀...𝑁) ∧ -(𝐹‘(𝑛 + 1)) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4826, 45, 47syl2anc 397 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4940, 44, 483brtr4d 3822 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)))
501, 6, 49monoord 9399 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁))
51 eluzfz1 8997 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 5206 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453eleq1d 2122 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
5554rspcv 2669 . . . . . 6 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
5652, 27, 55sylc 60 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
5756renegcld 7450 . . . 4 (𝜑 → -(𝐹𝑀) ∈ ℝ)
5853negeqd 7269 . . . . 5 (𝑘 = 𝑀 → -(𝐹𝑘) = -(𝐹𝑀))
5958, 4fvmptg 5276 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ -(𝐹𝑀) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
6052, 57, 59syl2anc 397 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
61 eluzfz2 8998 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
621, 61syl 14 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
63 fveq2 5206 . . . . . . . 8 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6463eleq1d 2122 . . . . . . 7 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
6564rspcv 2669 . . . . . 6 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑁) ∈ ℝ))
6662, 27, 65sylc 60 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
6766renegcld 7450 . . . 4 (𝜑 → -(𝐹𝑁) ∈ ℝ)
6863negeqd 7269 . . . . 5 (𝑘 = 𝑁 → -(𝐹𝑘) = -(𝐹𝑁))
6968, 4fvmptg 5276 . . . 4 ((𝑁 ∈ (𝑀...𝑁) ∧ -(𝐹𝑁) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
7062, 67, 69syl2anc 397 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
7150, 60, 703brtr3d 3821 . 2 (𝜑 → -(𝐹𝑀) ≤ -(𝐹𝑁))
7266, 56lenegd 7589 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -(𝐹𝑀) ≤ -(𝐹𝑁)))
7371, 72mpbird 160 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409  ∀wral 2323   class class class wbr 3792   ↦ cmpt 3846  ‘cfv 4930  (class class class)co 5540  ℂcc 6945  ℝcr 6946  1c1 6948   + caddc 6950   ≤ cle 7120   − cmin 7245  -cneg 7246  ℤcz 8302  ℤ≥cuz 8569  ...cfz 8976 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-fz 8977 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator