ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mor GIF version

Theorem mor 2019
Description: Converse of mo23 2018 with an additional 𝑥𝜑 condition. (Contributed by Jim Kingdon, 25-Jun-2018.)
Hypothesis
Ref Expression
mor.1 𝑦𝜑
Assertion
Ref Expression
mor (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mor
StepHypRef Expression
1 mor.1 . . 3 𝑦𝜑
21sb8e 1813 . 2 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
3 impexp 261 . . . . 5 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
4 bi2.04 247 . . . . 5 ((𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
53, 4bitri 183 . . . 4 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
652albii 1432 . . 3 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
7 nfs1v 1892 . . . . . 6 𝑥[𝑦 / 𝑥]𝜑
87nfri 1484 . . . . 5 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
98eximi 1564 . . . 4 (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥[𝑦 / 𝑥]𝜑)
10 alim 1418 . . . . . . 7 (∀𝑥([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → (∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
1110alimi 1416 . . . . . 6 (∀𝑦𝑥([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
1211a7s 1415 . . . . 5 (∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
13 exim 1563 . . . . 5 (∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)) → (∃𝑦𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
1412, 13syl 14 . . . 4 (∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → (∃𝑦𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
159, 14syl5com 29 . . 3 (∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
166, 15syl5bi 151 . 2 (∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
172, 16sylbi 120 1 (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1314  wnf 1421  wex 1453  [wsb 1720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-11 1469  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499
This theorem depends on definitions:  df-bi 116  df-nf 1422  df-sb 1721
This theorem is referenced by:  modc  2020
  Copyright terms: Public domain W3C validator