![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 7 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: impbii 124 pm3.2i 266 sstri 3009 0disj 3790 disjx0 3792 ontr2exmid 4276 0elsucexmid 4316 relres 4667 cnvdif 4760 funopab4 4967 fun0 4988 fvsn 5390 reltpos 5899 tpostpos 5913 tpos0 5923 oawordriexmid 6114 swoer 6200 xpiderm 6243 erinxp 6246 domfiexmid 6413 diffitest 6421 ltrel 7241 lerel 7243 frecfzennn 9508 |
Copyright terms: Public domain | W3C validator |