ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanlr1 GIF version

Theorem mpanlr1 424
Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanlr1.1 𝜓
mpanlr1.2 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
mpanlr1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem mpanlr1
StepHypRef Expression
1 mpanlr1.1 . . 3 𝜓
21jctl 301 . 2 (𝜒 → (𝜓𝜒))
3 mpanlr1.2 . 2 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
42, 3sylanl2 389 1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator