ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr2 GIF version

Theorem mpanr2 429
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanr2.1 𝜒
mpanr2.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr2 ((𝜑𝜓) → 𝜃)

Proof of Theorem mpanr2
StepHypRef Expression
1 mpanr2.1 . . 3 𝜒
21jctr 308 . 2 (𝜓 → (𝜓𝜒))
3 mpanr2.2 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
42, 3sylan2 280 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem is referenced by:  op1steq  5836  pm54.43  6518  prarloclemarch2  6671  prarloclemlt  6745  prsradd  7024  muleqadd  7825  divdivap1  7878  addltmul  8334  elfzp1b  9190  elfzm1b  9191  expp1zap  9622  expm1ap  9623
  Copyright terms: Public domain W3C validator