![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | GIF version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 | ⊢ 𝜓 |
mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mpi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: mp2 16 syl6mpi 63 mp2ani 423 pm2.24i 586 simplimdc 791 mp3an3 1258 3impexpbicom 1368 mpisyl 1376 equcomi 1633 equsex 1657 equsexd 1658 spimt 1665 spimeh 1668 equvini 1682 equveli 1683 sbcof2 1732 dveeq2 1737 ax11v2 1742 ax16i 1780 pm13.183 2733 euxfr2dc 2778 sbcth 2829 sbcth2 2902 ssun3 3138 ssun4 3139 ralf0 3346 rext 3972 exss 3984 uniopel 4013 onsucelsucexmid 4275 suc11g 4302 eunex 4306 ordsoexmid 4307 tfisi 4330 finds1 4345 relop 4508 dmrnssfld 4617 iss 4678 relcoi1 4873 nfunv 4957 funimass2 5002 fvssunirng 5215 fvmptg 5274 oprabidlem 5561 fovcl 5631 elovmpt2 5726 tfrlem1 5951 oaword1 6108 diffifi 6418 nlt1pig 6582 dmaddpq 6620 dmmulpq 6621 archnqq 6658 prarloclemarch2 6660 prarloclemlt 6734 cnegex 7342 nnge1 8118 zneo 8518 nn0o1gt2 10438 bdop 10809 bj-nntrans 10889 |
Copyright terms: Public domain | W3C validator |