![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjaod | GIF version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
Ref | Expression |
---|---|
mpjaod | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 2, 3 | jaod 670 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 662 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ifbothdc 3388 opth1 3999 onsucelsucexmidlem 4280 reldmtpos 5902 dftpos4 5912 nnm00 6168 indpi 6594 enq0tr 6686 prarloclem3step 6748 distrlem4prl 6836 distrlem4pru 6837 lelttr 7266 nn1suc 8125 nnsub 8144 nn0lt2 8510 uzin 8732 xrlelttr 8952 fzfig 9512 iseqid 9563 iseqz 9566 expival 9575 faclbnd 9765 facavg 9770 ibcval5 9787 iiserex 10315 fisumcvg 10338 absdvdsb 10358 dvdsabsb 10359 dvdsabseq 10392 m1exp1 10445 flodddiv4 10478 gcdaddm 10519 gcdabs1 10524 lcmdvds 10605 prmind2 10646 rpexp 10676 |
Copyright terms: Public domain | W3C validator |