ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2xopovel GIF version

Theorem mpt2xopovel 5886
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
Assertion
Ref Expression
mpt2xopovel ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝑁,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑛)

Proof of Theorem mpt2xopovel
StepHypRef Expression
1 mpt2xopoveq.f . . . 4 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpt2xopn0yelv 5884 . . 3 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
32pm4.71rd 380 . 2 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾))))
41mpt2xopoveq 5885 . . . . . 6 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
54eleq2d 2123 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ 𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 nfcv 2194 . . . . . . 7 𝑛𝑉
76elrabsf 2823 . . . . . 6 (𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁𝑉[𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
8 sbccom 2860 . . . . . . . 8 ([𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑)
9 sbccom 2860 . . . . . . . . 9 ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑[𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
109sbcbii 2844 . . . . . . . 8 ([𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
118, 10bitri 177 . . . . . . 7 ([𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
1211anbi2i 438 . . . . . 6 ((𝑁𝑉[𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))
137, 12bitri 177 . . . . 5 (𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))
145, 13syl6bb 189 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
1514pm5.32da 433 . . 3 ((𝑉𝑋𝑊𝑌) → ((𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾)) ↔ (𝐾𝑉 ∧ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))))
16 3anass 900 . . 3 ((𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾𝑉 ∧ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
1715, 16syl6bbr 191 . 2 ((𝑉𝑋𝑊𝑌) → ((𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾)) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
183, 17bitrd 181 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  {crab 2327  Vcvv 2574  [wsbc 2786  cop 3405  cfv 4929  (class class class)co 5539  cmpt2 5541  1st c1st 5792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator