ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1 GIF version

Theorem mpteq1 3870
Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1
StepHypRef Expression
1 eqidd 2083 . . 3 (𝑥𝐴𝐶 = 𝐶)
21rgen 2417 . 2 𝑥𝐴 𝐶 = 𝐶
3 mpteq12 3869 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐶) → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
42, 3mpan2 416 1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  wral 2349  cmpt 3847
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-ral 2354  df-opab 3848  df-mpt 3849
This theorem is referenced by:  mpteq1d  3871  fmptap  5385  mpt2mpt  5627  mpt2mptsx  5854  mpt2mpts  5855  tposf12  5918
  Copyright terms: Public domain W3C validator