Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12i GIF version

Theorem mpteq12i 3872
 Description: An equality inference for the maps to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12i.1 𝐴 = 𝐶
mpteq12i.2 𝐵 = 𝐷
Assertion
Ref Expression
mpteq12i (𝑥𝐴𝐵) = (𝑥𝐶𝐷)

Proof of Theorem mpteq12i
StepHypRef Expression
1 mpteq12i.1 . . . 4 𝐴 = 𝐶
21a1i 9 . . 3 (⊤ → 𝐴 = 𝐶)
3 mpteq12i.2 . . . 4 𝐵 = 𝐷
43a1i 9 . . 3 (⊤ → 𝐵 = 𝐷)
52, 4mpteq12dv 3866 . 2 (⊤ → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
65trud 1268 1 (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
 Colors of variables: wff set class Syntax hints:   = wceq 1259  ⊤wtru 1260   ↦ cmpt 3845 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-ral 2328  df-opab 3846  df-mpt 3847 This theorem is referenced by:  offres  5789
 Copyright terms: Public domain W3C validator