Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1d GIF version

Theorem mpteq1d 3883
 Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
mpteq1d (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 mpteq1 3882 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1285   ↦ cmpt 3859 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-ral 2358  df-opab 3860  df-mpt 3861 This theorem is referenced by:  fmptapd  5406  offval  5770
 Copyright terms: Public domain W3C validator