Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dva GIF version

Theorem mpteq2dva 3870
 Description: Slightly more general equality inference for the maps to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
Hypothesis
Ref Expression
mpteq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2dva (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq2dva
StepHypRef Expression
1 nfv 1462 . 2 𝑥𝜑
2 mpteq2dva.1 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
31, 2mpteq2da 3869 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434   ↦ cmpt 3841 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-ral 2354  df-opab 3842  df-mpt 3843 This theorem is referenced by:  mpteq2dv  3871  fmptapd  5380  offval  5744  offval2  5751  caofinvl  5758  caofcom  5759  freceq1  6035  freceq2  6036  sumeq1  10319  sumeq2d  10323  sumeq2  10324
 Copyright terms: Public domain W3C validator