ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptpreima GIF version

Theorem mptpreima 5032
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptpreima (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmmpo.1 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 3991 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2160 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 4714 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 4940 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2160 . . 3 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76imaeq1i 4878 . 2 (𝐹𝐶) = ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶)
8 df-ima 4552 . . 3 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶)
9 resopab 4863 . . . . 5 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
109rneqi 4767 . . . 4 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
11 ancom 264 . . . . . . . . 9 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶))
12 anass 398 . . . . . . . . 9 (((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1311, 12bitri 183 . . . . . . . 8 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1413exbii 1584 . . . . . . 7 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
15 19.42v 1878 . . . . . . . 8 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)))
16 df-clel 2135 . . . . . . . . . 10 (𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦𝐶))
1716bicomi 131 . . . . . . . . 9 (∃𝑦(𝑦 = 𝐵𝑦𝐶) ↔ 𝐵𝐶)
1817anbi2i 452 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
1915, 18bitri 183 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
2014, 19bitri 183 . . . . . 6 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴𝐵𝐶))
2120abbii 2255 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
22 rnopab 4786 . . . . 5 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
23 df-rab 2425 . . . . 5 {𝑥𝐴𝐵𝐶} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
2421, 22, 233eqtr4i 2170 . . . 4 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥𝐴𝐵𝐶}
2510, 24eqtri 2160 . . 3 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {𝑥𝐴𝐵𝐶}
268, 25eqtri 2160 . 2 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = {𝑥𝐴𝐵𝐶}
277, 26eqtri 2160 1 (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wex 1468  wcel 1480  {cab 2125  {crab 2420  {copab 3988  cmpt 3989  ccnv 4538  ran crn 4540  cres 4541  cima 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-mpt 3991  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552
This theorem is referenced by:  mptiniseg  5033  dmmpt  5034  fmpt  5570  f1oresrab  5585  suppssfv  5978  suppssov1  5979  infrenegsupex  9389  infxrnegsupex  11032  txcnmpt  12442  txdis1cn  12447  imasnopn  12468
  Copyright terms: Public domain W3C validator