![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > msqznn | GIF version |
Description: The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
msqznn | ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmulcl 8521 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 · 𝐴) ∈ ℤ) | |
2 | 1 | anidms 389 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 · 𝐴) ∈ ℤ) |
3 | 2 | adantr 270 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℤ) |
4 | 0z 8479 | . . . . 5 ⊢ 0 ∈ ℤ | |
5 | zapne 8539 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 # 0 ↔ 𝐴 ≠ 0)) | |
6 | 4, 5 | mpan2 416 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴 # 0 ↔ 𝐴 ≠ 0)) |
7 | 6 | pm5.32i 442 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) |
8 | zre 8472 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
9 | apsqgt0 7804 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | |
10 | 8, 9 | sylan 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) |
11 | 7, 10 | sylbir 133 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) |
12 | elnnz 8478 | . 2 ⊢ ((𝐴 · 𝐴) ∈ ℕ ↔ ((𝐴 · 𝐴) ∈ ℤ ∧ 0 < (𝐴 · 𝐴))) | |
13 | 3, 11, 12 | sylanbrc 408 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 ≠ wne 2249 class class class wbr 3806 (class class class)co 5564 ℝcr 7078 0cc0 7079 · cmul 7084 < clt 7251 # cap 7784 ℕcn 8142 ℤcz 8468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-mulrcl 7173 ax-addcom 7174 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-i2m1 7179 ax-0lt1 7180 ax-1rid 7181 ax-0id 7182 ax-rnegex 7183 ax-precex 7184 ax-cnre 7185 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-apti 7189 ax-pre-ltadd 7190 ax-pre-mulgt0 7191 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2826 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-opab 3861 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-iota 4918 df-fun 4955 df-fv 4961 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-sub 7384 df-neg 7385 df-reap 7778 df-ap 7785 df-inn 8143 df-n0 8392 df-z 8469 |
This theorem is referenced by: qreccl 8844 |
Copyright terms: Public domain | W3C validator |