ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02 GIF version

Theorem mul02 7455
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
StepHypRef Expression
1 0cn 7076 . . . 4 0 ∈ ℂ
21subidi 7344 . . 3 (0 − 0) = 0
32oveq1i 5549 . 2 ((0 − 0) · 𝐴) = (0 · 𝐴)
4 subdir 7454 . . . 4 ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴)))
51, 1, 4mp3an12 1233 . . 3 (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴)))
6 mulcl 7065 . . . . 5 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 · 𝐴) ∈ ℂ)
76subidd 7372 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 · 𝐴) − (0 · 𝐴)) = 0)
81, 7mpan 408 . . 3 (𝐴 ∈ ℂ → ((0 · 𝐴) − (0 · 𝐴)) = 0)
95, 8eqtrd 2088 . 2 (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = 0)
103, 9syl5eqr 2102 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  (class class class)co 5539  cc 6944  0cc0 6946   · cmul 6951  cmin 7244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-setind 4289  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-sub 7246
This theorem is referenced by:  mul02lem2  7456  mul01  7457  mul02i  7458  mul02d  7460
  Copyright terms: Public domain W3C validator