Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul32i GIF version

Theorem mul32i 7220
 Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mul32i ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)

Proof of Theorem mul32i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 mul.3 . 2 𝐶 ∈ ℂ
4 mul32 7203 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
51, 2, 3, 4mp3an 1243 1 ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1259   ∈ wcel 1409  (class class class)co 5539  ℂcc 6944   · cmul 6951 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-mulcom 7042  ax-mulass 7044 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2949  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-iota 4894  df-fv 4937  df-ov 5542 This theorem is referenced by:  8th4div3  8200
 Copyright terms: Public domain W3C validator