![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > muladd11 | GIF version |
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
muladd11 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7131 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | addcl 7160 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 415 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
4 | adddi 7167 | . . . 4 ⊢ (((1 + 𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) | |
5 | 1, 4 | mp3an2 1257 | . . 3 ⊢ (((1 + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) |
6 | 3, 5 | sylan 277 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) |
7 | 3 | mulid1d 7198 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) · 1) = (1 + 𝐴)) |
8 | 7 | adantr 270 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 1) = (1 + 𝐴)) |
9 | adddir 7172 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵))) | |
10 | 1, 9 | mp3an1 1256 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵))) |
11 | mulid2 7179 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
12 | 11 | adantl 271 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · 𝐵) = 𝐵) |
13 | 12 | oveq1d 5558 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) + (𝐴 · 𝐵)) = (𝐵 + (𝐴 · 𝐵))) |
14 | 10, 13 | eqtrd 2114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = (𝐵 + (𝐴 · 𝐵))) |
15 | 8, 14 | oveq12d 5561 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
16 | 6, 15 | eqtrd 2114 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 1c1 7044 + caddc 7046 · cmul 7048 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7130 ax-1cn 7131 ax-icn 7133 ax-addcl 7134 ax-mulcl 7136 ax-mulcom 7139 ax-mulass 7141 ax-distr 7142 ax-1rid 7145 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 |
This theorem is referenced by: muladd11r 7331 bernneq 9690 |
Copyright terms: Public domain | W3C validator |