ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11r GIF version

Theorem muladd11r 7918
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 108 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 1cnd 7782 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
31, 2addcomd 7913 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
4 simpr 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54, 2addcomd 7913 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 1) = (1 + 𝐵))
63, 5oveq12d 5792 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = ((1 + 𝐴) · (1 + 𝐵)))
7 muladd11 7895 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
8 mulcl 7747 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
94, 8addcld 7785 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 · 𝐵)) ∈ ℂ)
102, 1, 9addassd 7788 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))) = (1 + (𝐴 + (𝐵 + (𝐴 · 𝐵)))))
111, 9addcld 7785 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 + (𝐴 · 𝐵))) ∈ ℂ)
122, 11addcomd 7913 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + (𝐴 + (𝐵 + (𝐴 · 𝐵)))) = ((𝐴 + (𝐵 + (𝐴 · 𝐵))) + 1))
131, 4, 8addassd 7788 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 · 𝐵)) = (𝐴 + (𝐵 + (𝐴 · 𝐵))))
14 addcl 7745 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
1514, 8addcomd 7913 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 + 𝐵)))
1613, 15eqtr3d 2174 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 + (𝐴 · 𝐵))) = ((𝐴 · 𝐵) + (𝐴 + 𝐵)))
1716oveq1d 5789 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐵 + (𝐴 · 𝐵))) + 1) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
1810, 12, 173eqtrd 2176 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
196, 7, 183eqtrd 2176 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7618  1c1 7621   + caddc 7623   · cmul 7625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-1rid 7727  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator