ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 GIF version

Theorem mulap0 8415
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)

Proof of Theorem mulap0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recexap 8414 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
21adantl 275 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
3 simpllr 523 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 # 0)
4 simplll 522 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
5 simplrl 524 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
6 simprl 520 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
74, 5, 6mulassd 7789 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
8 simprr 521 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
98oveq2d 5790 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
104mulid1d 7783 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴)
117, 9, 103eqtrd 2176 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = 𝐴)
126mul02d 8154 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (0 · 𝑥) = 0)
133, 11, 123brtr4d 3960 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥))
144, 5mulcld 7786 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
15 0cnd 7759 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 0 ∈ ℂ)
16 mulext1 8374 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1714, 15, 6, 16syl3anc 1216 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1813, 17mpd 13 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) # 0)
192, 18rexlimddv 2554 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621   · cmul 7625   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by:  mulap0b  8416  mulap0i  8417  mulap0d  8419  divmuldivap  8472  divdivdivap  8473  divmuleqap  8477  divadddivap  8487  conjmulap  8489  expcl2lemap  10305  expclzaplem  10317
  Copyright terms: Public domain W3C validator