ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanapd GIF version

Theorem mulcanapd 7818
Description: Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
Hypotheses
Ref Expression
mulcand.1 (𝜑𝐴 ∈ ℂ)
mulcand.2 (𝜑𝐵 ∈ ℂ)
mulcand.3 (𝜑𝐶 ∈ ℂ)
mulcand.4 (𝜑𝐶 # 0)
Assertion
Ref Expression
mulcanapd (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem mulcanapd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
2 mulcand.4 . . . 4 (𝜑𝐶 # 0)
3 recexap 7810 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 403 . . 3 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
5 oveq2 5551 . . . 4 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
6 simprl 498 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
71adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ)
86, 7mulcomd 7202 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥))
9 simprr 499 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1)
108, 9eqtrd 2114 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1)
1110oveq1d 5558 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
12 mulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1312adantr 270 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
146, 7, 13mulassd 7204 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
1513mulid2d 7199 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴)
1611, 14, 153eqtr3d 2122 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
1710oveq1d 5558 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
18 mulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1918adantr 270 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
206, 7, 19mulassd 7204 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
2119mulid2d 7199 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵)
2217, 20, 213eqtr3d 2122 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
2316, 22eqeq12d 2096 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵))
245, 23syl5ib 152 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
254, 24rexlimddv 2482 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
26 oveq2 5551 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
2725, 26impbid1 140 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wrex 2350   class class class wbr 3793  (class class class)co 5543  cc 7041  0cc0 7043  1c1 7044   · cmul 7048   # cap 7748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749
This theorem is referenced by:  mulcanap2d  7819  mulcanapad  7820  mulcanap  7822  div11ap  7855  eqneg  7887  dvdscmulr  10369  qredeq  10622  cncongr1  10629
  Copyright terms: Public domain W3C validator