ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanpig GIF version

Theorem mulcanpig 7111
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
Assertion
Ref Expression
mulcanpig ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem mulcanpig
StepHypRef Expression
1 mulpiord 7093 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
21adantr 274 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
3 mulpiord 7093 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
43adantlr 468 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
52, 4eqeq12d 2132 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶)))
6 pinn 7085 . . . . . . . . 9 (𝐴N𝐴 ∈ ω)
7 pinn 7085 . . . . . . . . 9 (𝐵N𝐵 ∈ ω)
8 pinn 7085 . . . . . . . . 9 (𝐶N𝐶 ∈ ω)
9 elni2 7090 . . . . . . . . . . . 12 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
109simprbi 273 . . . . . . . . . . 11 (𝐴N → ∅ ∈ 𝐴)
11 nnmcan 6383 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
1211biimpd 143 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
1310, 12sylan2 284 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
1413ex 114 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
156, 7, 8, 14syl3an 1243 . . . . . . . 8 ((𝐴N𝐵N𝐶N) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
16153exp 1165 . . . . . . 7 (𝐴N → (𝐵N → (𝐶N → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
1716com4r 86 . . . . . 6 (𝐴N → (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
1817pm2.43i 49 . . . . 5 (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))
1918imp31 254 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
205, 19sylbid 149 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
21203impa 1161 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
22 oveq2 5750 . 2 (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶))
2321, 22impbid1 141 1 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 947   = wceq 1316  wcel 1465  c0 3333  ωcom 4474  (class class class)co 5742   ·o comu 6279  Ncnpi 7048   ·N cmi 7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286  df-ni 7080  df-mi 7082
This theorem is referenced by:  enqer  7134
  Copyright terms: Public domain W3C validator