ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsrec GIF version

Theorem mulcnsrec 7619
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6461, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7617. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
mulcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 7611 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
2 opelxpi 4541 . . . 4 ((𝐴R𝐵R) → ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 ecidg 6461 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (R × R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
42, 3syl 14 . . 3 ((𝐴R𝐵R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
5 opelxpi 4541 . . . 4 ((𝐶R𝐷R) → ⟨𝐶, 𝐷⟩ ∈ (R × R))
6 ecidg 6461 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (R × R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
75, 6syl 14 . . 3 ((𝐶R𝐷R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
84, 7oveqan12d 5761 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩))
9 simpll 503 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐴R)
10 simprl 505 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐶R)
11 mulclsr 7530 . . . . . 6 ((𝐴R𝐶R) → (𝐴 ·R 𝐶) ∈ R)
129, 10, 11syl2anc 408 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐶) ∈ R)
13 m1r 7528 . . . . . 6 -1RR
14 simplr 504 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐵R)
15 simprr 506 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐷R)
16 mulclsr 7530 . . . . . . 7 ((𝐵R𝐷R) → (𝐵 ·R 𝐷) ∈ R)
1714, 15, 16syl2anc 408 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐷) ∈ R)
18 mulclsr 7530 . . . . . 6 ((-1RR ∧ (𝐵 ·R 𝐷) ∈ R) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
1913, 17, 18sylancr 410 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
20 addclsr 7529 . . . . 5 (((𝐴 ·R 𝐶) ∈ R ∧ (-1R ·R (𝐵 ·R 𝐷)) ∈ R) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
2112, 19, 20syl2anc 408 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
22 mulclsr 7530 . . . . . 6 ((𝐵R𝐶R) → (𝐵 ·R 𝐶) ∈ R)
2314, 10, 22syl2anc 408 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐶) ∈ R)
24 mulclsr 7530 . . . . . 6 ((𝐴R𝐷R) → (𝐴 ·R 𝐷) ∈ R)
259, 15, 24syl2anc 408 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐷) ∈ R)
26 addclsr 7529 . . . . 5 (((𝐵 ·R 𝐶) ∈ R ∧ (𝐴 ·R 𝐷) ∈ R) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
2723, 25, 26syl2anc 408 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
28 opelxpi 4541 . . . 4 ((((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R ∧ ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
2921, 27, 28syl2anc 408 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
30 ecidg 6461 . . 3 (⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
3129, 30syl 14 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
321, 8, 313eqtr4d 2160 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  cop 3500   E cep 4179   × cxp 4507  ccnv 4508  (class class class)co 5742  [cec 6395  Rcnr 7073  -1Rcm1r 7076   +R cplr 7077   ·R cmr 7078   · cmul 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-imp 7245  df-enr 7502  df-nr 7503  df-plr 7504  df-mr 7505  df-m1r 7509  df-c 7594  df-mul 7600
This theorem is referenced by:  axmulcom  7647  axmulass  7649  axdistr  7650
  Copyright terms: Public domain W3C validator