ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 GIF version

Theorem mulextsr1 6863
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))

Proof of Theorem mulextsr1
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6810 . 2 R = ((P × P) / ~R )
2 oveq1 5519 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ))
32breq1d 3774 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R )))
4 breq1 3767 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
5 breq2 3768 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
64, 5orbi12d 707 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
73, 6imbi12d 223 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))))
8 oveq1 5519 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ))
98breq2d 3776 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R )))
10 breq2 3768 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 breq1 3767 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
1210, 11orbi12d 707 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
139, 12imbi12d 223 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
14 oveq2 5520 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R 𝐶))
15 oveq2 5520 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R 𝐶))
1614, 15breq12d 3777 . . 3 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶)))
1716imbi1d 220 . 2 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴)) ↔ ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
18 mulextsr1lem 6862 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
19 mulsrpr 6829 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
20193adant2 923 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
21 mulsrpr 6829 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
22213adant1 922 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
2320, 22breq12d 3777 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ))
24 simp1l 928 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑥P)
25 simp3l 932 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑢P)
26 mulclpr 6668 . . . . . . 7 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
2724, 25, 26syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑢) ∈ P)
28 simp1r 929 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑦P)
29 simp3r 933 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑣P)
30 mulclpr 6668 . . . . . . 7 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3128, 29, 30syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑣) ∈ P)
32 addclpr 6633 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3327, 31, 32syl2anc 391 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
34 mulclpr 6668 . . . . . . 7 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
3524, 29, 34syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑣) ∈ P)
36 mulclpr 6668 . . . . . . 7 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
3728, 25, 36syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑢) ∈ P)
38 addclpr 6633 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3935, 37, 38syl2anc 391 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
40 simp2l 930 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑧P)
41 mulclpr 6668 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
4240, 25, 41syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑢) ∈ P)
43 simp2r 931 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑤P)
44 mulclpr 6668 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
4543, 29, 44syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑣) ∈ P)
46 addclpr 6633 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
4742, 45, 46syl2anc 391 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
48 mulclpr 6668 . . . . . . 7 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
4940, 29, 48syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑣) ∈ P)
50 mulclpr 6668 . . . . . . 7 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
5143, 25, 50syl2anc 391 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑢) ∈ P)
52 addclpr 6633 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
5349, 51, 52syl2anc 391 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
54 ltsrprg 6830 . . . . 5 (((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P ∧ ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P) ∧ (((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P ∧ ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5533, 39, 47, 53, 54syl22anc 1136 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5623, 55bitrd 177 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
57 ltsrprg 6830 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
58573adant3 924 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
59 ltsrprg 6830 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6059ancoms 255 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
61603adant3 924 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6258, 61orbi12d 707 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
6318, 56, 623imtr4d 192 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
641, 7, 13, 17, 633ecoptocl 6195 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  cop 3378   class class class wbr 3764  (class class class)co 5512  [cec 6104  Pcnp 6387   +P cpp 6389   ·P cmp 6390  <P cltp 6391   ~R cer 6392  Rcnr 6393   ·R cmr 6398   <R cltr 6399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-imp 6565  df-iltp 6566  df-enr 6809  df-nr 6810  df-mr 6812  df-ltr 6813
This theorem is referenced by:  axpre-mulext  6960
  Copyright terms: Public domain W3C validator