ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 GIF version

Theorem mulge0 8374
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7741 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21ad2ant2r 500 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
3 0re 7759 . . . 4 0 ∈ ℝ
4 ltnsym2 7847 . . . 4 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
52, 3, 4sylancl 409 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
6 orc 701 . . . . . 6 ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵)))
7 reaplt 8343 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
82, 3, 7sylancl 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
96, 8syl5ibr 155 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → (𝐴 · 𝐵) # 0))
10 simplll 522 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 ∈ ℝ)
11 simplrl 524 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 ∈ ℝ)
12 recn 7746 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 recn 7746 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 mulap0r 8370 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1513, 14syl3an1 1249 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1612, 15syl3an2 1250 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
17163expia 1183 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1817ad2ant2r 500 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1918imp 123 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
2019simpld 111 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 # 0)
21 reaplt 8343 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
223, 21mpan2 421 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2322ad3antrrr 483 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2420, 23mpbid 146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 < 0 ∨ 0 < 𝐴))
25 lenlt 7833 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
263, 25mpan 420 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2726biimpa 294 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 𝐴 < 0)
2827ad2antrr 479 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐴 < 0)
29 biorf 733 . . . . . . . . 9 𝐴 < 0 → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3028, 29syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3124, 30mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐴)
3219simprd 113 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 # 0)
33 reaplt 8343 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
343, 33mpan2 421 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3534ad2antrl 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3635adantr 274 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3732, 36mpbid 146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 < 0 ∨ 0 < 𝐵))
38 lenlt 7833 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
393, 38mpan 420 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
4039biimpa 294 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ¬ 𝐵 < 0)
4140ad2antlr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐵 < 0)
42 biorf 733 . . . . . . . . 9 𝐵 < 0 → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4341, 42syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4437, 43mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐵)
4510, 11, 31, 44mulgt0d 7878 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < (𝐴 · 𝐵))
4645ex 114 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → 0 < (𝐴 · 𝐵)))
479, 46syld 45 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → 0 < (𝐴 · 𝐵)))
4847ancld 323 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵))))
495, 48mtod 652 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ (𝐴 · 𝐵) < 0)
50 lenlt 7833 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
513, 2, 50sylancr 410 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
5249, 51mpbird 166 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  wcel 1480   class class class wbr 3924  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613   · cmul 7618   < clt 7793  cle 7794   # cap 8336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337
This theorem is referenced by:  mulge0i  8375  mulge0d  8376  ge0mulcl  9758  expge0  10322  bernneq  10405  sqrtmul  10800  amgm2  10883
  Copyright terms: Public domain W3C validator