![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid2i | GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid2i | ⊢ (1 · 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid2 7249 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (1 · 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 (class class class)co 5564 ℂcc 7111 1c1 7114 · cmul 7118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-resscn 7200 ax-1cn 7201 ax-icn 7203 ax-addcl 7204 ax-mulcl 7206 ax-mulcom 7209 ax-mulass 7211 ax-distr 7212 ax-1rid 7215 ax-cnre 7219 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5567 |
This theorem is referenced by: halfpm6th 8388 div4p1lem1div2 8421 3halfnz 8595 sq10 9807 fac2 9825 3dvdsdec 10490 3dvds2dec 10491 odd2np1lem 10497 m1expo 10525 m1exp1 10526 nno 10531 ex-fl 10841 |
Copyright terms: Public domain | W3C validator |