ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 GIF version

Theorem mulp1mod1 10138
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9337 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21adantl 275 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℂ)
3 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
43zcnd 9174 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℂ)
52, 4mulcomd 7787 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁))
65oveq1d 5789 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁))
7 eluzelz 9335 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
8 zq 9418 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
97, 8syl 14 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℚ)
109adantl 275 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℚ)
11 0red 7767 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
12 2re 8790 . . . . . . . . 9 2 ∈ ℝ
1312a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ∈ ℝ)
147adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
1514zred 9173 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
16 2pos 8811 . . . . . . . . 9 0 < 2
1716a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 2)
18 eluzle 9338 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1918adantl 275 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ≤ 𝑁)
2011, 13, 15, 17, 19ltletrd 8185 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑁)
21 mulqmod0 10103 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝐴 · 𝑁) mod 𝑁) = 0)
223, 10, 20, 21syl3anc 1216 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0)
236, 22eqtrd 2172 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0)
2423oveq1d 5789 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1))
25 0p1e1 8834 . . . 4 (0 + 1) = 1
2624, 25syl6eq 2188 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1)
2726oveq1d 5789 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁))
28 zq 9418 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
293, 28syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℚ)
30 qmulcl 9429 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
3110, 29, 30syl2anc 408 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) ∈ ℚ)
32 1z 9080 . . . 4 1 ∈ ℤ
33 zq 9418 . . . 4 (1 ∈ ℤ → 1 ∈ ℚ)
3432, 33mp1i 10 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℚ)
35 modqaddmod 10136 . . 3 ((((𝑁 · 𝐴) ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
3631, 34, 10, 20, 35syl22anc 1217 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
37 eluz2gt1 9396 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
3837adantl 275 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑁)
39 q1mod 10129 . . 3 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4010, 38, 39syl2anc 408 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (1 mod 𝑁) = 1)
4127, 36, 403eqtr3d 2180 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  2c2 8771  cz 9054  cuz 9326  cq 9411   mod cmo 10095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator