ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpiord GIF version

Theorem mulpiord 6569
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulpiord ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 4402 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 5230 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( ·𝑜 ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( ·𝑜 ‘⟨𝐴, 𝐵⟩))
3 df-ov 5546 . . . 4 (𝐴 ·N 𝐵) = ( ·N ‘⟨𝐴, 𝐵⟩)
4 df-mi 6558 . . . . 5 ·N = ( ·𝑜 ↾ (N × N))
54fveq1i 5210 . . . 4 ( ·N ‘⟨𝐴, 𝐵⟩) = (( ·𝑜 ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2102 . . 3 (𝐴 ·N 𝐵) = (( ·𝑜 ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 5546 . . 3 (𝐴 ·𝑜 𝐵) = ( ·𝑜 ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2139 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
91, 8syl 14 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  cop 3409   × cxp 4369  cres 4373  cfv 4932  (class class class)co 5543   ·𝑜 comu 6063  Ncnpi 6524   ·N cmi 6526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-xp 4377  df-res 4383  df-iota 4897  df-fv 4940  df-ov 5546  df-mi 6558
This theorem is referenced by:  mulidpi  6570  mulclpi  6580  mulcompig  6583  mulasspig  6584  distrpig  6585  mulcanpig  6587  ltmpig  6591  archnqq  6669  enq0enq  6683  addcmpblnq0  6695  mulcmpblnq0  6696  mulcanenq0ec  6697  addclnq0  6703  mulclnq0  6704  nqpnq0nq  6705  nqnq0a  6706  nqnq0m  6707  nq0m0r  6708  distrnq0  6711  addassnq0lemcl  6713
  Copyright terms: Public domain W3C validator