![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulsubfacd | GIF version |
Description: Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.) |
Ref | Expression |
---|---|
mulsubfacd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulsubfacd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulsubfacd | ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulsubfacd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | ax-1cn 7201 | . . . 4 ⊢ 1 ∈ ℂ | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) |
4 | mulsubfacd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 1, 3, 4 | subdird 7656 | . 2 ⊢ (𝜑 → ((𝐴 − 1) · 𝐵) = ((𝐴 · 𝐵) − (1 · 𝐵))) |
6 | 4 | mulid2d 7269 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
7 | 6 | oveq2d 5580 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) − (1 · 𝐵)) = ((𝐴 · 𝐵) − 𝐵)) |
8 | 5, 7 | eqtr2d 2116 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 (class class class)co 5564 ℂcc 7111 1c1 7114 · cmul 7118 − cmin 7416 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-setind 4308 ax-resscn 7200 ax-1cn 7201 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-cnre 7219 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-iota 4917 df-fun 4954 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-sub 7418 |
This theorem is referenced by: maxabslemlub 10312 |
Copyright terms: Public domain | W3C validator |