 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1bddc GIF version

Theorem necon1bddc 2297
 Description: Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon1bddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜓)))
Assertion
Ref Expression
necon1bddc (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝜓𝐴 = 𝐵)))

Proof of Theorem necon1bddc
StepHypRef Expression
1 necon1bddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜓)))
2 df-ne 2221 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 231 . . 3 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3syl6ib 154 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜓)))
5 con1dc 764 . 2 (DECID 𝐴 = 𝐵 → ((¬ 𝐴 = 𝐵𝜓) → (¬ 𝜓𝐴 = 𝐵)))
64, 5sylcom 28 1 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝜓𝐴 = 𝐵)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4  DECID wdc 753   = wceq 1259   ≠ wne 2220 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640 This theorem depends on definitions:  df-bi 114  df-dc 754  df-ne 2221 This theorem is referenced by:  necon1ddc  2298
 Copyright terms: Public domain W3C validator