ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd GIF version

Theorem necon3bd 2292
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1 (𝜑 → (𝐴 = 𝐵𝜓))
Assertion
Ref Expression
necon3bd (𝜑 → (¬ 𝜓𝐴𝐵))

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3 (𝜑 → (𝐴 = 𝐵𝜓))
21con3d 594 . 2 (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵))
3 df-ne 2250 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3syl6ibr 160 1 (𝜑 → (¬ 𝜓𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1285  wne 2249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578
This theorem depends on definitions:  df-bi 115  df-ne 2250
This theorem is referenced by:  nelne1  2339  nelne2  2340  nssne1  3064  nssne2  3065  disjne  3313  difsn  3542  nbrne1  3822  nbrne2  3823  ac6sfi  6454  indpi  6646  zneo  8581
  Copyright terms: Public domain W3C validator