![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon4addc | GIF version |
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 17-May-2018.) |
Ref | Expression |
---|---|
necon4addc.1 | ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → ¬ 𝜓))) |
Ref | Expression |
---|---|
necon4addc | ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (𝜓 → 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4addc.1 | . 2 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → ¬ 𝜓))) | |
2 | df-ne 2250 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | imbi1i 236 | . . 3 ⊢ ((𝐴 ≠ 𝐵 → ¬ 𝜓) ↔ (¬ 𝐴 = 𝐵 → ¬ 𝜓)) |
4 | condc 783 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → ((¬ 𝐴 = 𝐵 → ¬ 𝜓) → (𝜓 → 𝐴 = 𝐵))) | |
5 | 3, 4 | syl5bi 150 | . 2 ⊢ (DECID 𝐴 = 𝐵 → ((𝐴 ≠ 𝐵 → ¬ 𝜓) → (𝜓 → 𝐴 = 𝐵))) |
6 | 1, 5 | sylcom 28 | 1 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (𝜓 → 𝐴 = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 776 = wceq 1285 ≠ wne 2249 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 578 ax-io 663 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-ne 2250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |