ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4ddc GIF version

Theorem necon4ddc 2321
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 17-May-2018.)
Hypothesis
Ref Expression
necon4ddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝐶𝐷)))
Assertion
Ref Expression
necon4ddc (𝜑 → (DECID 𝐴 = 𝐵 → (𝐶 = 𝐷𝐴 = 𝐵)))

Proof of Theorem necon4ddc
StepHypRef Expression
1 necon4ddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝐶𝐷)))
2 df-ne 2250 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
3 df-ne 2250 . . . 4 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
42, 3imbi12i 237 . . 3 ((𝐴𝐵𝐶𝐷) ↔ (¬ 𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
51, 4syl6ib 159 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)))
6 condc 783 . 2 (DECID 𝐴 = 𝐵 → ((¬ 𝐴 = 𝐵 → ¬ 𝐶 = 𝐷) → (𝐶 = 𝐷𝐴 = 𝐵)))
75, 6sylcom 28 1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐶 = 𝐷𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 776   = wceq 1285  wne 2249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115  df-dc 777  df-ne 2250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator