ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcl GIF version

Theorem negcl 7274
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.)
Assertion
Ref Expression
negcl (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)

Proof of Theorem negcl
StepHypRef Expression
1 df-neg 7248 . 2 -𝐴 = (0 − 𝐴)
2 0cn 7077 . . 3 0 ∈ ℂ
3 subcl 7273 . . 3 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ)
42, 3mpan 408 . 2 (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ)
51, 4syl5eqel 2140 1 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  (class class class)co 5540  cc 6945  0cc0 6947  cmin 7245  -cneg 7246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-neg 7248
This theorem is referenced by:  negicn  7275  negcon1  7326  negdi  7331  negdi2  7332  negsubdi2  7333  neg2sub  7334  negcli  7342  negcld  7372  mulneg2  7465  mul2neg  7467  mulsub  7470  divnegap  7757  divsubdirap  7759  divsubdivap  7779  eqneg  7783  div2negap  7786  divneg2ap  7787  zeo  8402  sqneg  9479  binom2sub  9531  shftval4  9657  shftcan1  9663  shftcan2  9664  crim  9686  resub  9698  imsub  9706  cjneg  9718  cjsub  9720  absneg  9877  abs2dif2  9934  subcn2  10063
  Copyright terms: Public domain W3C validator