![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negdvdsb | GIF version |
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
negdvdsb | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
2 | znegcl 8452 | . . . 4 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℤ) | |
3 | 2 | anim1i 333 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
4 | znegcl 8452 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
5 | 4 | adantl 271 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) |
6 | zcn 8426 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
7 | zcn 8426 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
8 | mul2neg 7558 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀)) | |
9 | 6, 7, 8 | syl2anr 284 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀)) |
10 | 9 | adantlr 461 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀)) |
11 | 10 | eqeq1d 2090 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · -𝑀) = 𝑁 ↔ (𝑥 · 𝑀) = 𝑁)) |
12 | 11 | biimprd 156 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · -𝑀) = 𝑁)) |
13 | 1, 3, 5, 12 | dvds1lem 10340 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → -𝑀 ∥ 𝑁)) |
14 | mulneg12 7557 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀)) | |
15 | 6, 7, 14 | syl2anr 284 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀)) |
16 | 15 | adantlr 461 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀)) |
17 | 16 | eqeq1d 2090 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · 𝑀) = 𝑁 ↔ (𝑥 · -𝑀) = 𝑁)) |
18 | 17 | biimprd 156 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · -𝑀) = 𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
19 | 3, 1, 5, 18 | dvds1lem 10340 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 ∥ 𝑁 → 𝑀 ∥ 𝑁)) |
20 | 13, 19 | impbid 127 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 class class class wbr 3787 (class class class)co 5537 ℂcc 7030 · cmul 7037 -cneg 7336 ℤcz 8421 ∥ cdvds 10329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-0id 7135 ax-rnegex 7136 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-ltadd 7143 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-br 3788 df-opab 3842 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-iota 4891 df-fun 4928 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-inn 8096 df-z 8422 df-dvds 10330 |
This theorem is referenced by: absdvdsb 10347 zdvdsdc 10350 bezoutlemzz 10524 lcmneg 10589 |
Copyright terms: Public domain | W3C validator |