ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negexsr GIF version

Theorem negexsr 7548
Description: Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
negexsr (𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem negexsr
StepHypRef Expression
1 m1r 7528 . . 3 -1RR
2 mulclsr 7530 . . 3 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
31, 2mpan2 421 . 2 (𝐴R → (𝐴 ·R -1R) ∈ R)
4 pn0sr 7547 . 2 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
5 oveq2 5750 . . . 4 (𝑥 = (𝐴 ·R -1R) → (𝐴 +R 𝑥) = (𝐴 +R (𝐴 ·R -1R)))
65eqeq1d 2126 . . 3 (𝑥 = (𝐴 ·R -1R) → ((𝐴 +R 𝑥) = 0R ↔ (𝐴 +R (𝐴 ·R -1R)) = 0R))
76rspcev 2763 . 2 (((𝐴 ·R -1R) ∈ R ∧ (𝐴 +R (𝐴 ·R -1R)) = 0R) → ∃𝑥R (𝐴 +R 𝑥) = 0R)
83, 4, 7syl2anc 408 1 (𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1316  wcel 1465  wrex 2394  (class class class)co 5742  Rcnr 7073  0Rc0r 7074  -1Rcm1r 7076   +R cplr 7077   ·R cmr 7078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-imp 7245  df-enr 7502  df-nr 7503  df-plr 7504  df-mr 7505  df-0r 7507  df-1r 7508  df-m1r 7509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator