ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negfi GIF version

Theorem negfi 10967
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem negfi
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3061 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (𝑎𝐴𝑎 ∈ ℝ))
2 renegcl 7991 . . . . . . . . . 10 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
31, 2syl6 33 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑎𝐴 → -𝑎 ∈ ℝ))
43imp 123 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → -𝑎 ∈ ℝ)
54ralrimiva 2482 . . . . . . 7 (𝐴 ⊆ ℝ → ∀𝑎𝐴 -𝑎 ∈ ℝ)
6 dmmptg 5006 . . . . . . 7 (∀𝑎𝐴 -𝑎 ∈ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
75, 6syl 14 . . . . . 6 (𝐴 ⊆ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
87eqcomd 2123 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎𝐴 ↦ -𝑎))
98eleq1d 2186 . . . 4 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
10 funmpt 5131 . . . . 5 Fun (𝑎𝐴 ↦ -𝑎)
11 fundmfibi 6795 . . . . 5 (Fun (𝑎𝐴 ↦ -𝑎) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
1210, 11mp1i 10 . . . 4 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
139, 12bitr4d 190 . . 3 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎𝐴 ↦ -𝑎) ∈ Fin))
14 reex 7722 . . . . . 6 ℝ ∈ V
1514ssex 4035 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
16 mptexg 5613 . . . . 5 (𝐴 ∈ V → (𝑎𝐴 ↦ -𝑎) ∈ V)
1715, 16syl 14 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎) ∈ V)
18 eqid 2117 . . . . . 6 (𝑎𝐴 ↦ -𝑎) = (𝑎𝐴 ↦ -𝑎)
1918negf1o 8112 . . . . 5 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
20 f1of1 5334 . . . . 5 ((𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴} → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
2119, 20syl 14 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
22 f1vrnfibi 6801 . . . 4 (((𝑎𝐴 ↦ -𝑎) ∈ V ∧ (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴}) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
2317, 21, 22syl2anc 408 . . 3 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
241imp 123 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
252adantl 275 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ)
26 recn 7721 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
2726negnegd 8032 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
2827eqcomd 2123 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → 𝑎 = --𝑎)
2928eleq1d 2186 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (𝑎𝐴 ↔ --𝑎𝐴))
3029biimpcd 158 . . . . . . . . . . . . 13 (𝑎𝐴 → (𝑎 ∈ ℝ → --𝑎𝐴))
3130adantl 275 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑎 ∈ ℝ → --𝑎𝐴))
3231imp 123 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎𝐴)
3325, 32jca 304 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
3424, 33mpdan 417 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
35 eleq1 2180 . . . . . . . . . 10 (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ))
36 negeq 7923 . . . . . . . . . . 11 (𝑛 = -𝑎 → -𝑛 = --𝑎)
3736eleq1d 2186 . . . . . . . . . 10 (𝑛 = -𝑎 → (-𝑛𝐴 ↔ --𝑎𝐴))
3835, 37anbi12d 464 . . . . . . . . 9 (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝐴)))
3934, 38syl5ibrcom 156 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
4039rexlimdva 2526 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
41 simprr 506 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → -𝑛𝐴)
42 negeq 7923 . . . . . . . . . . 11 (𝑎 = -𝑛 → -𝑎 = --𝑛)
4342eqeq2d 2129 . . . . . . . . . 10 (𝑎 = -𝑛 → (𝑛 = -𝑎𝑛 = --𝑛))
4443adantl 275 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎𝑛 = --𝑛))
45 recn 7721 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 ∈ ℂ)
46 negneg 7980 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → --𝑛 = 𝑛)
4746eqcomd 2123 . . . . . . . . . . 11 (𝑛 ∈ ℂ → 𝑛 = --𝑛)
4845, 47syl 14 . . . . . . . . . 10 (𝑛 ∈ ℝ → 𝑛 = --𝑛)
4948ad2antrl 481 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → 𝑛 = --𝑛)
5041, 44, 49rspcedvd 2769 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → ∃𝑎𝐴 𝑛 = -𝑎)
5150ex 114 . . . . . . 7 (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) → ∃𝑎𝐴 𝑛 = -𝑎))
5240, 51impbid 128 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
5352abbidv 2235 . . . . 5 (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)})
5418rnmpt 4757 . . . . 5 ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎}
55 df-rab 2402 . . . . 5 {𝑛 ∈ ℝ ∣ -𝑛𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)}
5653, 54, 553eqtr4g 2175 . . . 4 (𝐴 ⊆ ℝ → ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛𝐴})
5756eleq1d 2186 . . 3 (𝐴 ⊆ ℝ → (ran (𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5813, 23, 573bitrd 213 . 2 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5958biimpa 294 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  {cab 2103  wral 2393  wrex 2394  {crab 2397  Vcvv 2660  wss 3041  cmpt 3959  dom cdm 4509  ran crn 4510  Fun wfun 5087  1-1wf1 5090  1-1-ontowf1o 5092  Fincfn 6602  cc 7586  cr 7587  -cneg 7902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-1o 6281  df-er 6397  df-en 6603  df-fin 6605  df-sub 7903  df-neg 7904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator