ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso GIF version

Theorem negiso 8713
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
Assertion
Ref Expression
negiso (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)

Proof of Theorem negiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
2 simpr 109 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32renegcld 8142 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ)
4 simpr 109 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54renegcld 8142 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 recn 7753 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
7 recn 7753 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 negcon2 8015 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
96, 7, 8syl2an 287 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
109adantl 275 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦𝑦 = -𝑥))
111, 3, 5, 10f1ocnv2d 5974 . . . . 5 (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)))
1211mptru 1340 . . . 4 (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))
1312simpli 110 . . 3 𝐹:ℝ–1-1-onto→ℝ
14 simpl 108 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℝ)
1514recnd 7794 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℂ)
1615negcld 8060 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑧 ∈ ℂ)
177adantl 275 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1817negcld 8060 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℂ)
19 brcnvg 4720 . . . . . 6 ((-𝑧 ∈ ℂ ∧ -𝑦 ∈ ℂ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
2016, 18, 19syl2anc 408 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
211a1i 9 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥))
22 negeq 7955 . . . . . . . 8 (𝑥 = 𝑧 → -𝑥 = -𝑧)
2322adantl 275 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑧) → -𝑥 = -𝑧)
2421, 23, 14, 16fvmptd 5502 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑧) = -𝑧)
25 negeq 7955 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
2625adantl 275 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑦) → -𝑥 = -𝑦)
27 simpr 109 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2821, 26, 27, 18fvmptd 5502 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = -𝑦)
2924, 28breq12d 3942 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑧 < -𝑦))
30 ltneg 8224 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧))
3120, 29, 303bitr4rd 220 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
3231rgen2a 2486 . . 3 𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
33 df-isom 5132 . . 3 (𝐹 Isom < , < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
3413, 32, 33mpbir2an 926 . 2 𝐹 Isom < , < (ℝ, ℝ)
35 negeq 7955 . . . 4 (𝑦 = 𝑥 → -𝑦 = -𝑥)
3635cbvmptv 4024 . . 3 (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥)
3712simpri 112 . . 3 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)
3836, 37, 13eqtr4i 2170 . 2 𝐹 = 𝐹
3934, 38pm3.2i 270 1 (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wtru 1332  wcel 1480  wral 2416   class class class wbr 3929  cmpt 3989  ccnv 4538  1-1-ontowf1o 5122  cfv 5123   Isom wiso 5124  cc 7618  cr 7619   < clt 7800  -cneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936
This theorem is referenced by:  infrenegsupex  9389
  Copyright terms: Public domain W3C validator