ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelrdva GIF version

Theorem nelrdva 2769
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
nelrdva (𝜑 → ¬ 𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2057 . 2 ((𝜑𝐵𝐴) → 𝐵 = 𝐵)
2 eleq1 2116 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
32anbi2d 445 . . . . . 6 (𝑥 = 𝐵 → ((𝜑𝑥𝐴) ↔ (𝜑𝐵𝐴)))
4 neeq1 2233 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
53, 4imbi12d 227 . . . . 5 (𝑥 = 𝐵 → (((𝜑𝑥𝐴) → 𝑥𝐵) ↔ ((𝜑𝐵𝐴) → 𝐵𝐵)))
6 nelrdva.1 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
75, 6vtoclg 2630 . . . 4 (𝐵𝐴 → ((𝜑𝐵𝐴) → 𝐵𝐵))
87anabsi7 523 . . 3 ((𝜑𝐵𝐴) → 𝐵𝐵)
98neneqd 2241 . 2 ((𝜑𝐵𝐴) → ¬ 𝐵 = 𝐵)
101, 9pm2.65da 597 1 (𝜑 → ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101   = wceq 1259  wcel 1409  wne 2220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-v 2576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator