ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf3and GIF version

Theorem nf3and 1477
Description: Deduction form of bound-variable hypothesis builder nf3an 1474. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (𝜑 → Ⅎ𝑥𝜓)
nfand.2 (𝜑 → Ⅎ𝑥𝜒)
nfand.3 (𝜑 → Ⅎ𝑥𝜃)
Assertion
Ref Expression
nf3and (𝜑 → Ⅎ𝑥(𝜓𝜒𝜃))

Proof of Theorem nf3and
StepHypRef Expression
1 df-3an 898 . 2 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
2 nfand.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfand.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfand 1476 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
5 nfand.3 . . 3 (𝜑 → Ⅎ𝑥𝜃)
64, 5nfand 1476 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ 𝜃))
71, 6nfxfrd 1380 1 (𝜑 → Ⅎ𝑥(𝜓𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896  wnf 1365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354
This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator