Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsbd GIF version

Theorem nfcsbd 2940
 Description: Deduction version of nfcsb 2941. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1 𝑦𝜑
nfcsbd.2 (𝜑𝑥𝐴)
nfcsbd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcsbd (𝜑𝑥𝐴 / 𝑦𝐵)

Proof of Theorem nfcsbd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 2910 . 2 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nfv 1462 . . 3 𝑧𝜑
3 nfcsbd.1 . . . 4 𝑦𝜑
4 nfcsbd.2 . . . 4 (𝜑𝑥𝐴)
5 nfcsbd.3 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2233 . . . 4 (𝜑 → Ⅎ𝑥 𝑧𝐵)
73, 4, 6nfsbcd 2835 . . 3 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
82, 7nfabd 2238 . 2 (𝜑𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
91, 8nfcxfrd 2218 1 (𝜑𝑥𝐴 / 𝑦𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4  Ⅎwnf 1390   ∈ wcel 1434  {cab 2068  Ⅎwnfc 2207  [wsbc 2816  ⦋csb 2909 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-sbc 2817  df-csb 2910 This theorem is referenced by:  nfcsb  2941
 Copyright terms: Public domain W3C validator