ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff GIF version

Theorem nff 5070
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1 𝑥𝐹
nff.2 𝑥𝐴
nff.3 𝑥𝐵
Assertion
Ref Expression
nff 𝑥 𝐹:𝐴𝐵

Proof of Theorem nff
StepHypRef Expression
1 df-f 4933 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 nff.1 . . . 4 𝑥𝐹
3 nff.2 . . . 4 𝑥𝐴
42, 3nffn 5022 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 4606 . . . 4 𝑥ran 𝐹
6 nff.3 . . . 4 𝑥𝐵
75, 6nfss 2965 . . 3 𝑥ran 𝐹𝐵
84, 7nfan 1473 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
91, 8nfxfr 1379 1 𝑥 𝐹:𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wa 101  wnf 1365  wnfc 2181  wss 2944  ran crn 4373   Fn wfn 4924  wf 4925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-fun 4931  df-fn 4932  df-f 4933
This theorem is referenced by:  nff1  5117
  Copyright terms: Public domain W3C validator