ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinya GIF version

Theorem nfiinya 3715
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunya.1 𝑦𝐴
nfiunya.2 𝑦𝐵
Assertion
Ref Expression
nfiinya 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiinya
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3689 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiunya.1 . . . 4 𝑦𝐴
3 nfiunya.2 . . . . 5 𝑦𝐵
43nfcri 2214 . . . 4 𝑦 𝑧𝐵
52, 4nfralya 2405 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2224 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2217 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 1434  {cab 2068  wnfc 2207  wral 2349   ciin 3687
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-iin 3689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator