ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmo GIF version

Theorem nfmo 1936
Description: Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1371 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 1933 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54trud 1268 1 𝑥∃*𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1260  wnf 1365  ∃*wmo 1917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920
This theorem is referenced by:  euexex  2001  nfdisjv  3785  reusv1  4218  mosubopt  4433  dffun6f  4943
  Copyright terms: Public domain W3C validator