Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpo GIF version

Theorem nfpo 4065
 Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfpo 𝑥 𝑅 Po 𝐴

Proof of Theorem nfpo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4060 . 2 (𝑅 Po 𝐴 ↔ ∀𝑎𝐴𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)))
2 nfpo.a . . 3 𝑥𝐴
3 nfcv 2194 . . . . . . . 8 𝑥𝑎
4 nfpo.r . . . . . . . 8 𝑥𝑅
53, 4, 3nfbr 3835 . . . . . . 7 𝑥 𝑎𝑅𝑎
65nfn 1564 . . . . . 6 𝑥 ¬ 𝑎𝑅𝑎
7 nfcv 2194 . . . . . . . . 9 𝑥𝑏
83, 4, 7nfbr 3835 . . . . . . . 8 𝑥 𝑎𝑅𝑏
9 nfcv 2194 . . . . . . . . 9 𝑥𝑐
107, 4, 9nfbr 3835 . . . . . . . 8 𝑥 𝑏𝑅𝑐
118, 10nfan 1473 . . . . . . 7 𝑥(𝑎𝑅𝑏𝑏𝑅𝑐)
123, 4, 9nfbr 3835 . . . . . . 7 𝑥 𝑎𝑅𝑐
1311, 12nfim 1480 . . . . . 6 𝑥((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
146, 13nfan 1473 . . . . 5 𝑥𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
152, 14nfralxy 2377 . . . 4 𝑥𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
162, 15nfralxy 2377 . . 3 𝑥𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
172, 16nfralxy 2377 . 2 𝑥𝑎𝐴𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
181, 17nfxfr 1379 1 𝑥 𝑅 Po 𝐴
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101  Ⅎwnf 1365  Ⅎwnfc 2181  ∀wral 2323   class class class wbr 3791   Po wpo 4058 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-un 2949  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-po 4060 This theorem is referenced by:  nfso  4066
 Copyright terms: Public domain W3C validator