![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfr | GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) |
Ref | Expression |
---|---|
nfr | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1391 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | sp 1442 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1283 Ⅎwnf 1390 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-4 1441 |
This theorem depends on definitions: df-bi 115 df-nf 1391 |
This theorem is referenced by: nfri 1453 nfrd 1454 nfimd 1518 19.23t 1608 equs5or 1752 sbequi 1761 sbft 1770 sbcomxyyz 1888 rgen2a 2418 |
Copyright terms: Public domain | W3C validator |