ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldya GIF version

Theorem nfraldya 2355
Description: Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfraldxy 2353 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfraldya.2 𝑦𝜑
nfraldya.3 (𝜑𝑥𝐴)
nfraldya.4 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfraldya (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem nfraldya
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ral 2308 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
2 sbim 1827 . . . . . 6 ([𝑧 / 𝑦](𝑦𝐴𝜓) ↔ ([𝑧 / 𝑦]𝑦𝐴 → [𝑧 / 𝑦]𝜓))
3 clelsb3 2142 . . . . . . 7 ([𝑧 / 𝑦]𝑦𝐴𝑧𝐴)
43imbi1i 227 . . . . . 6 (([𝑧 / 𝑦]𝑦𝐴 → [𝑧 / 𝑦]𝜓) ↔ (𝑧𝐴 → [𝑧 / 𝑦]𝜓))
52, 4bitri 173 . . . . 5 ([𝑧 / 𝑦](𝑦𝐴𝜓) ↔ (𝑧𝐴 → [𝑧 / 𝑦]𝜓))
65albii 1359 . . . 4 (∀𝑧[𝑧 / 𝑦](𝑦𝐴𝜓) ↔ ∀𝑧(𝑧𝐴 → [𝑧 / 𝑦]𝜓))
7 nfv 1421 . . . . 5 𝑧(𝑦𝐴𝜓)
87sb8 1736 . . . 4 (∀𝑦(𝑦𝐴𝜓) ↔ ∀𝑧[𝑧 / 𝑦](𝑦𝐴𝜓))
9 df-ral 2308 . . . 4 (∀𝑧𝐴 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧(𝑧𝐴 → [𝑧 / 𝑦]𝜓))
106, 8, 93bitr4i 201 . . 3 (∀𝑦(𝑦𝐴𝜓) ↔ ∀𝑧𝐴 [𝑧 / 𝑦]𝜓)
11 nfv 1421 . . . 4 𝑧𝜑
12 nfraldya.3 . . . 4 (𝜑𝑥𝐴)
13 nfraldya.2 . . . . 5 𝑦𝜑
14 nfraldya.4 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
1513, 14nfsbd 1851 . . . 4 (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
1611, 12, 15nfraldxy 2353 . . 3 (𝜑 → Ⅎ𝑥𝑧𝐴 [𝑧 / 𝑦]𝜓)
1710, 16nfxfrd 1364 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝜓))
181, 17nfxfrd 1364 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241  wnf 1349  wcel 1393  [wsb 1645  wnfc 2165  wral 2303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308
This theorem is referenced by:  nfralya  2359
  Copyright terms: Public domain W3C validator