ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexdxy GIF version

Theorem nfrexdxy 2445
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexdya 2447 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfraldxy.2 𝑦𝜑
nfraldxy.3 (𝜑𝑥𝐴)
nfraldxy.4 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrexdxy (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrexdxy
StepHypRef Expression
1 df-rex 2399 . 2 (∃𝑦𝐴 𝜓 ↔ ∃𝑦(𝑦𝐴𝜓))
2 nfraldxy.2 . . 3 𝑦𝜑
3 nfcv 2258 . . . . . 6 𝑥𝑦
43a1i 9 . . . . 5 (𝜑𝑥𝑦)
5 nfraldxy.3 . . . . 5 (𝜑𝑥𝐴)
64, 5nfeld 2274 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfraldxy.4 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfand 1532 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
92, 8nfexd 1719 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝜓))
101, 9nfxfrd 1436 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1421  wex 1453  wcel 1465  wnfc 2245  wrex 2394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-4 1472  ax-17 1491  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-nf 1422  df-cleq 2110  df-clel 2113  df-nfc 2247  df-rex 2399
This theorem is referenced by:  nfrexdya  2447  nfrexxy  2449  nfunid  3713  strcollnft  13109
  Copyright terms: Public domain W3C validator