ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfs1f GIF version

Theorem nfs1f 1679
Description: If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1f.1 𝑥𝜑
Assertion
Ref Expression
nfs1f 𝑥[𝑦 / 𝑥]𝜑

Proof of Theorem nfs1f
StepHypRef Expression
1 nfs1f.1 . . . 4 𝑥𝜑
21nfri 1428 . . 3 (𝜑 → ∀𝑥𝜑)
32sbh 1675 . 2 ([𝑦 / 𝑥]𝜑𝜑)
43, 1nfxfr 1379 1 𝑥[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1365  [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-i9 1439  ax-ial 1443
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator